Take the following example for instance: During routine testing, a 125 HP pump motor indicated a current imbalance of 8.56% and an impedance imbalance of 13% (see figure 1). Normally a current imbalance of this nature is cause for concern and is an indication that there is a potential winding fault. But, a motor that is not sufficiently loaded will possibly run with a current imbalance. This creates variations in the phase impedance, which duplicates indications of a stator fault. In the case of this motor, it was only loaded at 41% Full Load Amps. When it was observed that the loading was inadequate to produce repeatable data, (that could be reliably trended), an additional test was scheduled to confirm motor condition.

Table 1

The results of the follow up test confirmed the Analysts suspicion that the data taken when the motor was insufficiently loaded was not adequate to make a recommendation for further offline testing or a recommendation to replace the motor outright (see figure 2). It is important to keep in mind that the repeatability of data taken is one of the most critical issues facing any application of Condition Monitoring technology and directly affects the ability of the applied technology to accurately classify defects. In the case of Online Motor Circuit Analysis, noting drive train load is critical to accurate fault detection.

Table 2

When performing MCSA, a good rule of thumb is to not perform testing on motors that are not loaded at least 70%. The best practice in this case is to delay testing until the motor is sufficiently loaded to yield good results. To gain efficiency in the process, a simple ampere reading can be taken prior to going through the process of performing the hookup procedure for Online testing. Many of the machines that we are responsible for performing Condition Monitoring on are part of a process where conditions are variable (e.g., transfer pumps and agitators), and the first consideration needs to be that we can take the right data that will accurately indicate the presence or absence of failure modes for the applied tests.

There remains the question of machine trains that are consistently loaded below the sufficient level for MCSA to be performed. There are two key questions to be considered in this type of case.

1. Should MCSA testing be performed at all?

2. Base on this data, what other actions should be considered?

For the first question, the answer is yes with a caveat. Performance of motor testing still can be conducted and if machine loading is consistent, then data can still be reliably trended with the understanding that the best recommendation that can ever be made from MCSA is for follow up Offline testing be conducted to confirm the results. As long as the loading is consistent, motor condition can still be trended with greater confidence in data as more historical data is collected. Second, and probably more important are the questions in the cases where the motor is loaded below 70%. These questions are simply one of application. Has the process changed and the required HP decreased for this machine? Has the motor always been lightly loaded? This is a case where re-engineering of the system is the proper course of action. If we are only using 50%-60% of a motors capability, then there is opportunity for savings by installing a motor of the proper size for the application.

In summary, MCSA is a very valuable tool in the Condition Based Monitoring (CBM) tool kit. It is important to understand the limitations of performing tests when the motor is insufficiently loaded and to take the necessary logistical steps to obtain repeatable data and ask the proper questions when a motor is discovered that is consistently loaded well below the rating of the motor. By considering load when performing MCSA, you will experience the results that you expect from the application of MCSA technology. The resulting higher levels of confidence in the accuracy of recommendations will ensure that the buy-in necessary to experience the Return on Investment (ROI) for the application of MCSA will be realized.

Submitted by:

Jason Bolte, CMRP
Program Manager
Allied Reliability, Inc
www.alliedreliability.com
888-414-5760

Upcoming Events

August 9 - August 11 2022

MaximoWorld 2022

View all Events
banner
80% of Reliabilityweb.com newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
DOWNLOAD NOW
Conducting Asset Criticality Assessment for Better Maintenance Strategy and Techniques

Conducting an asset criticality assessment (ACA) is the first step in maintaining the assets properly. This article addresses the best maintenance strategy for assets by using ACA techniques.

Harmonizing PMs

Maintenance reliability is, of course, an essential part of any successful business that wants to remain successful. It includes the three PMs: predictive, preventive and proactive maintenance.

How an Edge IoT Platform Increases Efficiency, Availability and Productivity

Within four years, more than 30 per cent of businesses and organizations will include edge computing in their cloud deployments to address bandwidth bottlenecks, reduce latency, and process data for decision support in real-time.

MaximoWorld 2022

The world's largest conference for IBM Maximo users, IBM Executives, IBM Maximo Partners and Services with Uptime Elements Reliability Framework and Asset Management System is being held Aug 8-11, 2022

6 Signs Your Maintenance Team Needs to Improve Its Safety Culture

When it comes to people and safety in industrial plants, maintenance teams are the ones who are most often in the line of fire and at risk for injury or death.

Making Asset Management Decisions: Caught Between the Push and the Pull

Most senior executives spend years climbing through the operational ranks. In the operational ranks, many transactional decisions are required each day.

Assume the Decision Maker Is Not Stupid to Make Your Communication More Powerful

Many make allowances for decision makers, saying some are “faking it until they make it.” However, this is the wrong default position to take when communicating with decision makers.

Ultrasound for Condition Monitoring and Acoustic Lubrication for Condition-Based Maintenance

With all the hype about acoustic lubrication instruments, you would think these instruments, once turned on, would do the job for you. Far from it!

Maintenance Costs as a Percent of Asset Replacement Value: A Useful Measure?

Someone recently asked for a benchmark for maintenance costs (MC) as a percent of asset replacement value (ARV) for chemical plants, or MC/ARV%.