The pickling process involves unwinding the steel and running it through a series of hydrochloric acid baths and rinse tanks. Once the steel is free of scale, it is typically coated with rust preventive oil and recoiled. Pickled steel can be sold to market or sent to a cold mill for further processing. The steel also can be trimmed to a customer’s width specification.

Pickled and oiled steel products are used for automotive frames, electrical cabinets, or painted, unexposed structural parts.

A typical pickle line consists of the following:

Uncoiler – Coils are received from the hot strip mill and unwrapped for processing;

Processor (Breaker Roll) – Minimizes tendency for coil breaks;

Shear & Welder – Provide square coil ends for welding;

Temper Mill/Tension Leveling – Increase pickling efficiency by breaking the surface oxide and provide a degree of strip flatness;

Pickle Tanks – Chemical reaction with hydrochloric acid removes black oxide scale;

Rinse Tanks – Clean residual acid from surface;

Dryer – Removes excess water to prevent rust and/or stain;

Shear – Cuts rolls to desired weight;

Oiler – Adds a thin layer of oil for rust protection;

Side Trimmer – Cuts each edge for width control;

Recoiler – Steel is recoiled and banded ready for transport.

Alignment of the rolling elements in the pickle line is crucial. As you can see, misalignment of any of these processes to each other or the whole will result in poor quality, scrap, and wasted time and money.

Misaligned rolls can cause strip tracking and differential sheet tension, which will affect line control and quality. Other common issues include: Payoff entry tension rolls misalignment affecting thread-up and entry steering; wringer roll misalignment affecting tracking, roll wear and acid contamination; Recoiler and steering control misalignment affecting even and straight windups.

Secondary misalignments create excess vibration, which in turn causes excessive impacting that will result in poorly finished products and scrap. The damage to the bearings that support the rolls can be severe, causing premature failure and unscheduled downtime, not to mention the cost of the bearings and the cost of replacement.

There are other issues specific to the pickle line, typically occurring in the pickle and rinse sections. These issues are usually generated at the payoff end of the line and show up in pickle and rinse.

Telescoping at the rewind mandrel is a common result of misalignment. The eye coil or the first several wraps do not wind true to the coil. Telescoping makes coils difficult to handle and susceptible to damage.


If a line is a continuous pickle line, there may be problems with the looper cars that allow for continuous operation. The looper cars store or accumulate steel, allowing different sections to keep running, usually the pickle and rinse, while one section is stopped. This is to allow a new coil to be welded or stitched to the end of the coil in process, or to allow a coil to be sheared and unloaded from the delivery end. Historically, as little as 45% to 50% storage capacity is used because of tracking issues, which seriously reduces throughput.

Case Study

The issue: Uncontrolled tracking to one side of the line at the delivery (exit).

Operators had to feed the strip in off-center to get it to track at the delivery end. This was a consistent trend for all strip widths, but especially for wide, heavy gauge steel. Correcting the strip feed during operation required stopping the line, adding unnecessary additional time to the process.

The first step in improving the strip tracking was measuring the process tank rolls for square and level. The data was reviewed and the decision was made to correct eight roll stands. Priority was given to the stands that would improve strip steering in the tank section and reduce the bias of the strip on the operator side. Significant corrections were made to the roll stands.

The entry equipment, bridle rolls, tension leveler and flattener were measured for level and square. Opportunities for improving alignment were also found in this section. The flattener was found to be out of alignment and in the opposite direction of the lead-in pinch rolls.


Once the root cause of the misalignment had been identified, corrections were made to the roll stands (corrected for square, rolls leveled), flattener, bridle rolls (level and square), and the entry payoff stubs were rebuilt and replaced.

The first benefit was improved runnability. The strip was easier to control and did not need to be offset at the entry of the line. The second benefit was speed through the tanks. Throughput increased since it was no longer necessary to aggressively steer the strip as it ran consistently down the process centerline. Edge damage was reduced, increasing end product yield. Improvements in the control of speed and steering produced more control in the pickling tanks and better quality pickling.

Laser Alignment

The measurement and alignment in this case study was conducted with lasers. This makes the data repeatable at unrelated time intervals over the course of the entire measurement and alignment. Because laser measurements offer live data, moves can be made in real time, eliminating the need to move and recheck and then repeat until the desired alignment is achieved, and saving time and money.

All of the measurements and corrections were made without disassembling the pickle tanks by using a patented enclosed roll process. This significantly reduced the downtime required.

Proper alignment of all components to a single baseline is critical to the operations and maintenance of all sections in a pickle line. The laser measurement techniques presented here can be applied to all sections and/or rolls, whether measuring an entire section or just replacing individual rolls.

Keep reading... Show less

Upcoming Events

August 9 - August 11 2022

MaximoWorld 2022

View all Events
80% of newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
Conducting Asset Criticality Assessment for Better Maintenance Strategy and Techniques

Conducting an asset criticality assessment (ACA) is the first step in maintaining the assets properly. This article addresses the best maintenance strategy for assets by using ACA techniques.

Harmonizing PMs

Maintenance reliability is, of course, an essential part of any successful business that wants to remain successful. It includes the three PMs: predictive, preventive and proactive maintenance.

How an Edge IoT Platform Increases Efficiency, Availability and Productivity

Within four years, more than 30 per cent of businesses and organizations will include edge computing in their cloud deployments to address bandwidth bottlenecks, reduce latency, and process data for decision support in real-time.

MaximoWorld 2022

The world's largest conference for IBM Maximo users, IBM Executives, IBM Maximo Partners and Services with Uptime Elements Reliability Framework and Asset Management System is being held Aug 8-11, 2022

6 Signs Your Maintenance Team Needs to Improve Its Safety Culture

When it comes to people and safety in industrial plants, maintenance teams are the ones who are most often in the line of fire and at risk for injury or death.

Making Asset Management Decisions: Caught Between the Push and the Pull

Most senior executives spend years climbing through the operational ranks. In the operational ranks, many transactional decisions are required each day.

Assume the Decision Maker Is Not Stupid to Make Your Communication More Powerful

Many make allowances for decision makers, saying some are “faking it until they make it.” However, this is the wrong default position to take when communicating with decision makers.

Ultrasound for Condition Monitoring and Acoustic Lubrication for Condition-Based Maintenance

With all the hype about acoustic lubrication instruments, you would think these instruments, once turned on, would do the job for you. Far from it!

Maintenance Costs as a Percent of Asset Replacement Value: A Useful Measure?

Someone recently asked for a benchmark for maintenance costs (MC) as a percent of asset replacement value (ARV) for chemical plants, or MC/ARV%.