CRL 1-hr: 9/26 Introduction to Uptime Elements Reliability Framework and Asset Management System

It's a Team Effort

by Paul Tomlingson

What is the plant maintenance program? The plant maintenance program depicts the interaction of the total plant population as they request or identify work; classify it to determine the best reaction; plan, schedule, assign, control and measure the resulting work; and assess overall accomplishments against goals, such as performance standards and budgets.The program explains and prescribes what personnel do and who does what, how, when and why? The personnel involved are more than those in maintenance. They also include all who support maintenance, such as warehousing, or depend on maintenance services, as with production.

The success of all maintenance functions is enhanced with a program commonly understood across the entire operation. But, the most important aspect of all is to ensure that those other departments that must support maintenance or utilize its services know how. If they don’t know what maintenance wants and needs, they cannot deliver it. There is an axiom that suggests: If you want someone’s help, you must first tell them how they can help. More simply: No tell; no help.

Maintenance is not a stand-alone effort. Any successful effort to improve maintenance performance, regardless of how, depends on the quality of the plant maintenance program. It’s important to note that it is the plant maintenance program, not the maintenancedepartment’s maintenance program. Maintenance is a service provider, dependent for success on the cooperation and support of all other plant departments and the backing of a supportive plant manager. Maintenance is not to be carried out single-handedly by maintenance. Planning, for example, is a key maintenance function and the responsibility for successful planning rests solely with maintenance. But, the planning function requires the support of numerous plant departments, like warehousing, purchasing, shops, accounting, etc. Few maintenance functions are successful without help and cooperation from other departments.

Getting Started

Only the plant manager controls all departments. Therefore, the existence of a quality plant maintenance program is the responsibility of the plant manager. However, the maintenance manager is responsible for the effective execution of the elements of the plant maintenance program. Yet, the maintenance manager depends on all other departments in order to execute the plant maintenance program. Thus, the plant manager becomes responsible for ensuring the support and cooperation of other departments, which, in turn, ensure the success of maintenance. What must the plant manager do? Based on the corporate business strategy, the plant manager, as shown in Figure 1, develops a business plan (1), assigns departmental objectives specifying responsibilities for primary operational or support activities to include interactions with maintenance (2) and specifies policies for the conduct of maintenance (3). In turn, departments acknowledge objectives and follow policies as they incorporate all experiences with merit (4) and follow principles (5) to develop internal and interdepartmental procedures (6). Procedures are then incorporated into departmental programs (7) and information systems utilized to control actions (8). Once tested, departments organize to support programs (9) and interact according to approved program details (10). Thereafter, information is used to control and manage the overall operation (11).

It follows that the best maintenance organization must be capable of executing the what, who, how, when and why of the plant maintenance program. And the best information system is the one that provides the right information to ensure efficient execution of the what, who, how, etc., specified in the program. It is reasonable to state that modern strategies, like reliability centered maintenance (RCM), cannot be successfully implemented unless there is a plant maintenance program, organization and information system to support them. It logically follows that only when a plant and its maintenance department have solidly locked down what they do, how, etc., can they confidently choose the best organization and a competent information system to carry out and control plant maintenance activities.

Figure 1

Program Development

Program definition begins at the plant manager level. This individual states how the departments should work together efficiently and productively by assigning specific objectives. The plant manager provides policies so departments are guided as they develop internal and interdepartmental procedures that make the plant’s maintenance program work efficiently.

Effective maintenance and actions that assure reliable equipment and workforce productivity don’t simply happen! They happen only after clear, logical management guidance is provided and a quality program emerges.

Program definition is a composite interaction of all departments. As they work together, maintenance crews, equipment operators, supervisors and staff personnel, like planners, warehouse personnel, or purchasing agents, should confer as the procedures for each department are being developed and interdepartmental actions confirmed. This collaboration better assures the practicality and workability of the final program.

Program education is essential and must include everyone in the plant, from worker to manager. Plant managers should make a special effort to observe the discussion between departments as they commit to procedures necessary to carry out the plant’s business plan. Questions should be answered promptly and correctly. Recommendations should be welcomed and encouraged.

Program Definition Techniques

The most effective technique for documenting the program is a schematic diagram that depicts the interaction between individuals of participating departments. The schematic is accompanied by a legend to aid understanding of the step-by-step process. While other techniques, such as flow charts, decision trees, or narratives, with diagrams might be used, none are as effective as the schematic diagram in showing people’s interactions. The schematic pinpoints ‘you’ and ‘me.’ It describes directly what ‘we’ must do, how ‘we’ will do it and the results ‘we’ should achieve. It is this ‘personal’ explanation that helps to bind people to the program.

As Figure 2 illustrates, preventive maintenance (PM) services due are shown by the information system (1). Services on equipment due (2) are either static (require shutdown) or dynamic (done while running). Static services are integrated into the weekly schedule and operations is advised of the approved, scheduled shutdown times (3). Dynamic PM services are done at the discretion of the maintenance supervisor (4). The maintenance supervisor assigns PM services to individual crew members (5). Services are performed by maintenance crew members (6) and crew members confer with operators to learn about actual equipment condition (7). Operators assist according to their instructions (8), while operations supervisors are advised of new deficiencies by the crew member (9). Deficiencies are then reviewed by the maintenance supervisor and the crew member (10) and converted into work as follows: Emergency repairs - Supervisor assigns at first opportunity (11); Work that meets planning criteria requiring planning - Supervisor forwards to planner (12); and Unscheduled repairs - Crew member enters them into the work order system as new work to be fitted in at first opportunity (13).

Figure 2


It is always prudent to ensure that everyone in an industrial organization understands their operational, support and cooperative roles and responsibilities. When this happens, the plant maintenance effort will be successful.

Paul D. Tomlingson, retired, is a 44 year veteran maintenance management consultant focusing on heavy industry. Mr. Tomlingson is the author of eleven textbooks and over a hundred published trade journal articles. He is a graduate of West Point and received a BA in Government and a MBA from the University of New Hampshire.

Upcoming Events

August 8 - August 10, 2023

Maximo World 2023

View all Events
80% of newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
Reliability Risk Meter

The asset is not concerned with the management decision. The asset responds to physics

Why Reliability Leadership?

If you do not manage reliability culture, it manages you, and you may not even be aware of the extent to which this is happening!

Asset Condition Management versus Asset Health Index

Confusion abounds in language. Have you thought through the constraints of using the language of Asset Health?

Seven Chakras of Asset Management by Terrence O'Hanlon

The seven major asset management chakras run cross-functionally from the specification and design of assets through the asset lifecycle to the decommissioning and disposal of the asset connected through technology

Reliability Leader Fluid Cleanliness Pledge

Fluid Cleanliness is a Reliability Achievement Strategy as well as an asset life extension strategy

MaximoWorld 2022 Conference Austin Texas

Connect with leading maintenance professionals, reliability leaders and asset managers from the world's best-run companies who are driving digital reinvention.

“Steel-ing” Reliability in Alabama

A joint venture between two of the world’s largest steel companies inspired innovative approaches to maintenance reliability that incorporate the tools, technology and techniques of today. This article takes you on their journey.

Three Things You Need to Know About Capital Project Prioritization

“Why do you think these two projects rank so much higher in this method than the first method?” the facilitator asked the director of reliability.

What Is Industrial Maintenance as a Service?

Industrial maintenance as a service (#imaas) transfers the digital and/or manual management of maintenance and industrial operations from machine users to machine manufacturers (OEMs), while improving it considerably.

Three Things You Need to Know About Criticality Analysis

When it comes to criticality analysis, there are three key factors must be emphasized.