Improving existing plant performance requires the elimination of repeat failures or emerging failures. Root Cause Analysis (RCA) is undertaken as a search for the "Root Cause" of the problem. Effective RCA is really about seeking effective solutions that control the causes of problems. Like a detective we look for causes from the effects. Each cause produces the next effect. When we define a problem and begin looking for causes, we ask why of the effect, and answer with a cause. Effects become causes as we continue to ask why, and a cause and effect chain is established. The solution we select is the one that is attached to one of the causes that prevents the problem from recurring.

Understanding the cause and effect relationships of equipment and operational problems, is an essential part of an effective maintenance program. The best way to institutionalize RCA is to train all levels of an organisation, so that seeking effective solutions is applied at the workplace and capturing "good" failure data for analysis is a normal requirement.


Figure 1: Weibull wear-out life curve

It is now one of the most commonly used methods for fitting equipment life data and has been used extensively in the aviation industry. The essence of Weibull's work was to discover he could represent the Bathtub Curve of Figure No. 1 using one mathematical formula. The three zones of the bathtub curve can be represented using Weibull parameters beta (shape parameter), eta (life) and gamma (location).

Understanding the Weibull shape parameters provides the owners, users and maintainers of equipment with a tool to predict the behavior of engineering components and select effective maintenance strategies.

β<1 implies infant mortality. Electronic and mechanical components often have high failure rates initially. Some components are ‘burnt in' prior to use, others require careful commissioning after installation.

β=1 implies random failures. These failures are independent of time where an old part is as good as a new part. Maintenance overhauls are not appropriate. Condition monitoring and inspection are strategies used to detect the onset of failure, and reduce the consequences of failure.

1<β<4 implies early wear out. Failures of this type are not normally expected within the design life. Failure mechanisms such as corrosion, erosion, low cycle fatigue and bearing failures fall in this range. Maintenance often involves a periodic rework or life extension task.
β<4 these are wear out or end of life failures. They should not appear within the design life. Appropriate maintenance is often renewal. An ideal profile for equipment is to have a negligible failure probability throughout its design life followed by a steep b where the replacement age can be predicted. Age related failures include stress corrosion cracking, creep, high cycle fatigue, and erosion.

Today Weibull analysis is commonly being used to predict safe intervals for operation in applications such as warranty periods, shutdown intervals and increasingly in setting maintenance and inspection intervals. With more sophisticated CMMS in use, the collection of failure mode data is more reliable and data analysis can be handled electronically.

Many organizations have been keeping records of failures manually or in computer systems, but not using the data in any useful way. Failure data is the best source of reliability information available. It has relevance and is easy for site people to relate their own experience to. By transforming it into useful information from which failure forecasts can be made it can then be used to model the benefits of alternative strategies or to analyze the reliability of current systems and the capacity to meet operating needs.


Having determined the Weibull parameters that best represent failure mode behavior, they can be used to simulate performance over extended periods of time. Modern simulation packages involve a simulation engine that generates random numbers in accordance with the Weibull parameters over a specified system lifetime. Used in conjunction with Reliability Centered Maintenance (RCM) principles, the process of selecting maintenance and inspection intervals becomes a process of playing "what if" by comparing different reliability strategies.

Article submitted by by: Mick Drew of ARMS

Upcoming Events

August 9 - August 11 2022

MaximoWorld 2022

View all Events
80% of newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
Conducting Asset Criticality Assessment for Better Maintenance Strategy and Techniques

Conducting an asset criticality assessment (ACA) is the first step in maintaining the assets properly. This article addresses the best maintenance strategy for assets by using ACA techniques.

Harmonizing PMs

Maintenance reliability is, of course, an essential part of any successful business that wants to remain successful. It includes the three PMs: predictive, preventive and proactive maintenance.

How an Edge IoT Platform Increases Efficiency, Availability and Productivity

Within four years, more than 30 per cent of businesses and organizations will include edge computing in their cloud deployments to address bandwidth bottlenecks, reduce latency, and process data for decision support in real-time.

MaximoWorld 2022

The world's largest conference for IBM Maximo users, IBM Executives, IBM Maximo Partners and Services with Uptime Elements Reliability Framework and Asset Management System is being held Aug 8-11, 2022

6 Signs Your Maintenance Team Needs to Improve Its Safety Culture

When it comes to people and safety in industrial plants, maintenance teams are the ones who are most often in the line of fire and at risk for injury or death.

Making Asset Management Decisions: Caught Between the Push and the Pull

Most senior executives spend years climbing through the operational ranks. In the operational ranks, many transactional decisions are required each day.

Assume the Decision Maker Is Not Stupid to Make Your Communication More Powerful

Many make allowances for decision makers, saying some are “faking it until they make it.” However, this is the wrong default position to take when communicating with decision makers.

Ultrasound for Condition Monitoring and Acoustic Lubrication for Condition-Based Maintenance

With all the hype about acoustic lubrication instruments, you would think these instruments, once turned on, would do the job for you. Far from it!

Maintenance Costs as a Percent of Asset Replacement Value: A Useful Measure?

Someone recently asked for a benchmark for maintenance costs (MC) as a percent of asset replacement value (ARV) for chemical plants, or MC/ARV%.