Why Vibration Is Important_Fluke_Figure 1


Vibration monitoring makes it possible to detect and diagnose problems before they become severe. Using vibration monitoring, maintenance teams can identify machine faults and take action when it makes the most sense.

Using vibration monitoring, maintenance teams can identify machine faults and take action when it makes the most sense, rather than too early or too late. This is part of a practice known as condition-based maintenance. Condition- based maintenance relies on machine condition, rather than a calendar, to identify and plan maintenance actions. It improves uptime and asset life, decreases unplanned downtime, prevents equipment failures, and eliminates unnecessary maintenance actions — that is, those performed because the calendar says to, regardless of machine condition.

What Is Vibration Monitoring?

All machinery vibrates, but excess vibration can be an early signifier of potential issues. It can also cause premature wear in components, lead to unsafe conditions and shorten asset life. Vibration monitoring automates the data collection process and makes it possible to detect and diagnose problems before they become severe.

To collect data, vibration monitoring devices are installed directly on machinery. A tiered approach to vibration monitoring involves using analysis sensors that capture extensive data on the most critical assets, while using screening sensors for the remainder. This strategy makes it possible to monitor all assets, without being cost prohibitive.

What Is Vibration Screening?

Screening sensors are an effective way to monitor semi-critical assets, which don’t require full spectral data on a regular basis. These sensors collect quick snapshots of data that can tell maintenance teams whether machines are functioning correctly or not. If a machine isn’t functioning correctly, the team can perform an inspection, collect additional data, and determine next steps. Vibration screening is akin to performing triage.

Critical assets, on the other hand, benefit from more powerful sensors that are capable of capturing more extensive data. Analysis data is much more detailed than screening data and makes it possible to look at patterns in order to identify faults.

Using vibration monitoring on all assets helps facilities ensure they have a view into their overall asset health. With the ability to make accurate predictions about when equipment will need maintenance, teams can prevent equipment failures and unplanned downtime.

Vibration data can be collected from a wide range of asset types. For example, wastewater treatment plants use a variety of pumps, blowers, and compressors, while conveyor belts in the food and beverage industry have many small motors and gearboxes. Vibration data from all of these assets can be collected and analyzed to help teams plan and prioritize their maintenance activities.

What Is Vibration Analysis?

Vibration analysis is simply using a machine’s vibration data to identify faults. Detection involves trending a machine’s vibration level and quantifying any deviations from the norm. Analysis goes deeper than detection and involves determining the nature of the problem. When vibration sensors detect a significant change, vibration analysis is used to find out what caused the change. Part of vibration analysis is recognizing patterns, but it takes training and experience to spot and read all of the necessary patterns.

Using accelerometers, vibration monitors measure changes in the amplitude, frequency, and intensity of vibration. The four most common types of faults detected by vibration are imbalance, looseness, misalignment, and bearing wear. Collecting vibration data over time enables teams to compare measurements, spot patterns, and quickly pinpoint abnormalities. When failure mode patterns emerge, they can identify potential faults well before they occur.

Software analytics can track and trend vibration data over time, providing insights and leading to improved decision-making. Historical trends can help maintenance teams focus how they spend their time and energy — and make impending faults easier to detect. Using wireless technology, vibration sensors can connect to software that helps maintenance teams make sense of the data collected and determine the most effective corrective actions.

The Benefits of Vibration Monitoring and Analysis

Vibration monitoring is a scalable way to gather data from numerous assets. With vibration sensors monitoring equipment around the clock, maintenance teams can spend less time taking manual readings — yet still have a clear picture of the health of their assets. And when vibration monitoring sensors are placed on assets in harsh or hazardous environments, or even just hard-to- reach places, technicians can reduce their trips to those assets to an as-needed basis.

When sensors are paired with cloud-based software, technicians can access vibration data and insights from mobile devices wherever they are. Remote access keeps them safer — and reducing route-based maintenance enables technicians to devote their time and attention to the most important tasks.

Because planned corrective repairs carry less risk than emergency repairs, technicians experience safer work conditions when the need for emergency repairs is dramatically reduced.

There are direct budget benefits, too — not only from preventing unplanned downtime and production stoppages but also from making it possible to better plan scheduling and inventory, ensure the accuracy of productivity estimates, and extend asset life.

John Bernet

John Bernet, Mechanical Application and Product Specialist with Fluke Reliability, works with customers from all industries to successfully implement their reliability programs. He has more than 30 years of experience in the maintenance and operation of commercial machinery and as a nuclear power plant electrician in the U.S. Navy. He holds a Category II Vibration Analyst certification and is a Certified Maintenance Reliability Professional (CMRP). www.accelix.com

Upcoming Events

August 9 - August 11 2022

MaximoWorld 2022

View all Events
banner
80% of Reliabilityweb.com newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
DOWNLOAD NOW
Conducting Asset Criticality Assessment for Better Maintenance Strategy and Techniques

Conducting an asset criticality assessment (ACA) is the first step in maintaining the assets properly. This article addresses the best maintenance strategy for assets by using ACA techniques.

Harmonizing PMs

Maintenance reliability is, of course, an essential part of any successful business that wants to remain successful. It includes the three PMs: predictive, preventive and proactive maintenance.

How an Edge IoT Platform Increases Efficiency, Availability and Productivity

Within four years, more than 30 per cent of businesses and organizations will include edge computing in their cloud deployments to address bandwidth bottlenecks, reduce latency, and process data for decision support in real-time.

MaximoWorld 2022

The world's largest conference for IBM Maximo users, IBM Executives, IBM Maximo Partners and Services with Uptime Elements Reliability Framework and Asset Management System is being held Aug 8-11, 2022

6 Signs Your Maintenance Team Needs to Improve Its Safety Culture

When it comes to people and safety in industrial plants, maintenance teams are the ones who are most often in the line of fire and at risk for injury or death.

Making Asset Management Decisions: Caught Between the Push and the Pull

Most senior executives spend years climbing through the operational ranks. In the operational ranks, many transactional decisions are required each day.

Assume the Decision Maker Is Not Stupid to Make Your Communication More Powerful

Many make allowances for decision makers, saying some are “faking it until they make it.” However, this is the wrong default position to take when communicating with decision makers.

Ultrasound for Condition Monitoring and Acoustic Lubrication for Condition-Based Maintenance

With all the hype about acoustic lubrication instruments, you would think these instruments, once turned on, would do the job for you. Far from it!

Maintenance Costs as a Percent of Asset Replacement Value: A Useful Measure?

Someone recently asked for a benchmark for maintenance costs (MC) as a percent of asset replacement value (ARV) for chemical plants, or MC/ARV%.