When shafts or belts are improperly aligned, it increases the load on them, potentially resulting in a range of problems that can have a direct impact on a company’s bottom line:

  • Increased friction, which can lead to excessive wear, excessive energy consumption, and the likelihood of equipment breaking down prematurely
  • Excessive wear on bearings and seals, resulting in premature failure
  • Premature shaft and coupling failure
  • Excessive seal lubricant leakage
  • Failure of coupling and foundation bolts
  • Increased vibration and noise

To help prevent these potential problems, SKF offers the following tips and suggestions:

  • There are basically two kinds of shaft misalignment: parallel (or offset) misalignment and angular misalignment. With parallel misalignment, the center lines of both shafts are parallel to one another, but they are offset. In angular misalignment, the shafts are at an angle to one other. You need to consider both possibilities when checking for misalignment.
  • Don’t rely solely on visual inspection to check alignment. Dial indicators are somewhat more accurate, but don’t provide real-time values to help technicians to simultaneously measure and attain correct alignment. Instead, dial indicators must be removed and reinstalled after each alignment adjustment is completed. Neither method provides the level of accuracy required by much of today’s precision machinery.
  • Today’s laser-guided tools are quick, easy-to-use and accurate. They typically consist of two units that emit and detect a laser beam, and a handheld control device. The handheld device displays real-time coupling and foot values (which indicate moveable machine foot positions to facilitate corrections) during the alignment process, eliminating the need to remove and reinstall the measuring units after each adjustment. In addition, the laser system tool documents the values, which can be downloaded to a computer and used to benchmark future alignment inspections.
  • When inspecting for misalignment, be sure to account for “soft foot,” a condition where one foot of a machine does not sit flat on the base plate. Shim plates generally can be used to bring machines back into alignment.
  • Institute an ongoing alignment maintenance program to document alignment conditions before a machine is removed from service and to make sure any misalignment is properly detected, analyzed and corrected.

SKF offers a complete line of laser-guided shaft alignment systems. The TKSA 60 and TKSA 80 Shaft Alignment systems are designed for both novices and experienced users. Each provides a complete built-in alignment process that takes users from preparation and evaluation all the way through to correction and documenting the results achieved. Each system’s built-in wireless module eliminates the need for additional cables and devices, creating a faster, more efficient tool to collect the necessary alignment data.

Complementing TKSA 60 and TKSA 80 Shaft Alignment systems are the laser-guided TKSA 20 and TKSA 40 utilities. The TKSA 20 is an easy to use shaft alignment tool designed for both beginners and experts, while the TKSA 40 offers a graphical interface and additional features, such as the ability to check alignment using pre-installed or user-definable tolerance tables built into the system.

Upcoming Events

August 9 - August 11 2022

MaximoWorld 2022

View all Events
banner
80% of Reliabilityweb.com newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
DOWNLOAD NOW
Conducting Asset Criticality Assessment for Better Maintenance Strategy and Techniques

Conducting an asset criticality assessment (ACA) is the first step in maintaining the assets properly. This article addresses the best maintenance strategy for assets by using ACA techniques.

Harmonizing PMs

Maintenance reliability is, of course, an essential part of any successful business that wants to remain successful. It includes the three PMs: predictive, preventive and proactive maintenance.

How an Edge IoT Platform Increases Efficiency, Availability and Productivity

Within four years, more than 30 per cent of businesses and organizations will include edge computing in their cloud deployments to address bandwidth bottlenecks, reduce latency, and process data for decision support in real-time.

MaximoWorld 2022

The world's largest conference for IBM Maximo users, IBM Executives, IBM Maximo Partners and Services with Uptime Elements Reliability Framework and Asset Management System is being held Aug 8-11, 2022

6 Signs Your Maintenance Team Needs to Improve Its Safety Culture

When it comes to people and safety in industrial plants, maintenance teams are the ones who are most often in the line of fire and at risk for injury or death.

Making Asset Management Decisions: Caught Between the Push and the Pull

Most senior executives spend years climbing through the operational ranks. In the operational ranks, many transactional decisions are required each day.

Assume the Decision Maker Is Not Stupid to Make Your Communication More Powerful

Many make allowances for decision makers, saying some are “faking it until they make it.” However, this is the wrong default position to take when communicating with decision makers.

Ultrasound for Condition Monitoring and Acoustic Lubrication for Condition-Based Maintenance

With all the hype about acoustic lubrication instruments, you would think these instruments, once turned on, would do the job for you. Far from it!

Maintenance Costs as a Percent of Asset Replacement Value: A Useful Measure?

Someone recently asked for a benchmark for maintenance costs (MC) as a percent of asset replacement value (ARV) for chemical plants, or MC/ARV%.