SAN DIEGO (January 21, 2016) - Mtell announced today that the new release of its market leading predictive and prescriptive analytics platform, Mtell PreviseTM, has been revised to execute on and incorporate all elements of the open source Apache SparkTM project.

{image:1}

Apache Spark is an open source general framework used for large-scale data processing. It scales rapidly and easily among computing clusters, and performs in-memory computing to dramatically reduce execution times for real-time processing. Furthermore, it also permits computation of extremely large data sets. Spark is ideal for machine learning, where its intrinsic ability to cache datasets in memory greatly speeds up iterative processing of algorithms. In addition to performance improvements, Spark brings a reliable library of algorithms and consistent access to both streaming and batch data in one unified platform.

Mtell’s Industrialized Machine LearningTM is the cornerstone of IIoT prescriptive maintenance solutions that are improving contemporary methods of inspections and service. This simplification and approachability of big data, predictive analysis, and prescriptive methods, ensures that end users can solve maintenance problems that were unsolvable five years ago. Mtell Previse uses streaming sensor data that is autonomously processed by machine learning algorithms to focus on the origins of degradation. The early warnings allow problems to be fixed before they impact operations; thereby reducing maintenance efforts, extending the life of capital assets, and improving equipment uptime. Mtell maximizes operational effectiveness for customers in diverse markets that include transportation, oil and gas, mining, water/wastewater, and other asset-intensive industries.

Beginning today, data scientists and analysts who are familiar with R, Python, or Scala can enhance overall monitoring by deploying custom logic, calculations, and algorithms inside the Mtell Previse platform. The combination of Spark and Previse both leverage the agility of the Spark ecosystem for exploratory analysis, including Jupyter notebook capabilities, and the power of Previse as an end-to-end monitoring platform. The world’s largest industrial companies use the solution to monitor fleets of offshore drilling rigs, mining facilities, heavy haul trucks, locomotive engines, pumps, compressors, and static equipment.

“Engineers and data scientists at large enterprises want to perform exploratory analysis for advanced scenarios. Our approach enables them to concentrate on value creation, where the solution platform manages all the mechanics of data handling and live monitoring,” said Alex Bates, CTO of Mtell. “Customers can readily insert custom code, and our Spark integration provides a cost-effective method to scale to exceptionally large multi-site deployments.”

About Mtell

Founded in 2006, Mtell is a privately held company providing software solutions for managing the health of industrial equipment. Making machines smart, Mtell plays an important role in developing the Internet of Things. In addition to reducing risk to people safety, and the environment, Mtell is a significant contributor to equipment performance and profitability. Solutions are deployed globally in the transportation, oil and gas, mining, pharmaceutical, and wastewater industries. For more information, visit http://www.mtell.com.

Upcoming Events

August 9 - August 11 2022

MaximoWorld 2022

View all Events
banner
80% of Reliabilityweb.com newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
DOWNLOAD NOW
“Steel-ing” Reliability in Alabama

A joint venture between two of the world’s largest steel companies inspired innovative approaches to maintenance reliability that incorporate the tools, technology and techniques of today. This article takes you on their journey.

Three Things You Need to Know About Capital Project Prioritization

“Why do you think these two projects rank so much higher in this method than the first method?” the facilitator asked the director of reliability.

What Is Industrial Maintenance as a Service?

Industrial maintenance as a service (#imaas) transfers the digital and/or manual management of maintenance and industrial operations from machine users to machine manufacturers (OEMs), while improving it considerably.

Three Things You Need to Know About Criticality Analysis

When it comes to criticality analysis, there are three key factors must be emphasized.

Turning the Oil Tanker

This article highlights the hidden trap of performance management systems.

Optimizing Value From Physical Assets

There are ever-increasing opportunities to create new and sustainable value in asset-intensive organizations through enhanced use of technology.

Conducting Asset Criticality Assessment for Better Maintenance Strategy and Techniques

Conducting an asset criticality assessment (ACA) is the first step in maintaining the assets properly. This article addresses the best maintenance strategy for assets by using ACA techniques.

Harmonizing PMs

Maintenance reliability is, of course, an essential part of any successful business that wants to remain successful. It includes the three PMs: predictive, preventive and proactive maintenance.

How an Edge IoT Platform Increases Efficiency, Availability and Productivity

Within four years, more than 30 per cent of businesses and organizations will include edge computing in their cloud deployments to address bandwidth bottlenecks, reduce latency, and process data for decision support in real-time.

MaximoWorld 2022

The world's largest conference for IBM Maximo users, IBM Executives, IBM Maximo Partners and Services with Uptime Elements Reliability Framework and Asset Management System is being held Aug 8-11, 2022