FREEIntroduction to Uptime Elements Reliability Framework and Asset Management System

SAN DIEGO (January 21, 2016) - Mtell announced today that the new release of its market leading predictive and prescriptive analytics platform, Mtell PreviseTM, has been revised to execute on and incorporate all elements of the open source Apache SparkTM project.

{image:1}

Apache Spark is an open source general framework used for large-scale data processing. It scales rapidly and easily among computing clusters, and performs in-memory computing to dramatically reduce execution times for real-time processing. Furthermore, it also permits computation of extremely large data sets. Spark is ideal for machine learning, where its intrinsic ability to cache datasets in memory greatly speeds up iterative processing of algorithms. In addition to performance improvements, Spark brings a reliable library of algorithms and consistent access to both streaming and batch data in one unified platform.

Mtell’s Industrialized Machine LearningTM is the cornerstone of IIoT prescriptive maintenance solutions that are improving contemporary methods of inspections and service. This simplification and approachability of big data, predictive analysis, and prescriptive methods, ensures that end users can solve maintenance problems that were unsolvable five years ago. Mtell Previse uses streaming sensor data that is autonomously processed by machine learning algorithms to focus on the origins of degradation. The early warnings allow problems to be fixed before they impact operations; thereby reducing maintenance efforts, extending the life of capital assets, and improving equipment uptime. Mtell maximizes operational effectiveness for customers in diverse markets that include transportation, oil and gas, mining, water/wastewater, and other asset-intensive industries.

Beginning today, data scientists and analysts who are familiar with R, Python, or Scala can enhance overall monitoring by deploying custom logic, calculations, and algorithms inside the Mtell Previse platform. The combination of Spark and Previse both leverage the agility of the Spark ecosystem for exploratory analysis, including Jupyter notebook capabilities, and the power of Previse as an end-to-end monitoring platform. The world’s largest industrial companies use the solution to monitor fleets of offshore drilling rigs, mining facilities, heavy haul trucks, locomotive engines, pumps, compressors, and static equipment.

“Engineers and data scientists at large enterprises want to perform exploratory analysis for advanced scenarios. Our approach enables them to concentrate on value creation, where the solution platform manages all the mechanics of data handling and live monitoring,” said Alex Bates, CTO of Mtell. “Customers can readily insert custom code, and our Spark integration provides a cost-effective method to scale to exceptionally large multi-site deployments.”

About Mtell

Founded in 2006, Mtell is a privately held company providing software solutions for managing the health of industrial equipment. Making machines smart, Mtell plays an important role in developing the Internet of Things. In addition to reducing risk to people safety, and the environment, Mtell is a significant contributor to equipment performance and profitability. Solutions are deployed globally in the transportation, oil and gas, mining, pharmaceutical, and wastewater industries. For more information, visit http://www.mtell.com.

Upcoming Events

August 8 - August 10, 2023

Maximo World 2023

View all Events
banner
80% of Reliabilityweb.com newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
DOWNLOAD NOW
Internet of Things Vendors Disrupting the Asset Condition Management Domain at IMC-2022

Internet of Things Vendors Disrupting the Asset Condition Management Domain at IMC-2022 The 36th International Maintenance Conference collocated with the RELIABILITY 4.0 Digital Transformation Conference [East]

Asset Management Technology

The aim of the Asset Management technology domain is to assure that IT/OT systems are focused on creating the value from the assets and that the business can deliver to achieve organizational objectives as informed by risk.

TRIRIGAWORLD AWARDS at MaximoWorld 2022

TRIRIGAWORLD AWARDS honors excellence in space optimization and facility management, A Reliabilityweb.com event to further advance asset management

IMC-2022 Who's Who: The World's Best Run Companies

The International Maintenance Conference (IMC) provides a fresh, positive community-based curated experience to gain knowledge and a positive perspective for advancing reliability and asset management through people, their managers, the strategy, the processes, the data and the technology. The world’s best-run companies are connecting the workforce, management, assets and data to automate asset knowledge that can be leveraged for huge beneficial decisions.

Uptime Elements Root Cause Analysis

Root Cause Analysis is a problem solving method. Professionals who are competent in Root Cause Analysis for problem solving are in high demand.

Reliability Risk Meter

The asset is not concerned with the management decision. The asset responds to physics

Why Reliability Leadership?

If you do not manage reliability culture, it manages you, and you may not even be aware of the extent to which this is happening!

Asset Condition Management versus Asset Health Index

Confusion abounds in language. Have you thought through the constraints of using the language of Asset Health?

Seven Chakras of Asset Management by Terrence O'Hanlon

The seven major asset management chakras run cross-functionally from the specification and design of assets through the asset lifecycle to the decommissioning and disposal of the asset connected through technology

Reliability Leader Fluid Cleanliness Pledge

Fluid Cleanliness is a Reliability Achievement Strategy as well as an asset life extension strategy