FREE copy of the Uptime Elements Implementation Guide once you subscribe to Reliability Weekly

The Silicon Designs model 2266 is expressly tailored for zero-to-medium frequency applications and offers integral amplification and high-drive, low impedance buffering for precision measurements. The accelerometer produces two analog voltage outputs and supports both single ended and differential modes. Signal outputs are fully differential about a 2.5V common mode voltage. Sensitivity is independent from the supply voltage of +8 to +32V. At zero acceleration, the output differential voltage is nominally 0 VDC; at full scale acceleration, the output differential voltage is ±4 VDC. The sensors feature on-board voltage regulation and an internal voltage reference which eliminates precision power supply requirements. The sensor is relatively insensitive to temperature changes and thermal gradients. Self-calibration is quick and easy. Within standard range (2 g to 400 g), most accelerometers continue to operate after sustained exposures of up to 10K g shock and with limited exposure to temperatures above +200°C. Carefully regulated manufacturing processes ensure that each sensor is made to be virtually identical, allowing users to swap out modules with minimal modifications.

The low-impedance outputs of the Silicon Designs model 2266 will drive more than 100 meters of cable, with an overall flexibility that allows them to be used within a wider variety of applications, including wind turbines (where the sensors can be switched out without unwinding 300’ of cable); aircraft flutter testing (where the entire aircraft can be wired, though sensors only placed where needed); train testing; vehicle suspension testing; road tests; general drivetrain testing; automotive and aerospace NVH; and in-laboratory testing environments, particularly where vibration testing requirements necessitate frequent cable replacement.

For more information about the model 2266 or other products available from Silicon Designs, visit www.silicondesigns.com.

Click here to view data sheet: http://www.silicondesigns.com/ds/ds2266.html  

About Silicon Designs, Inc:
Based in Seattle, Washington, USA, Silicon Designs specializes in the design, development and manufacture of highly rugged industrial grade capacitive accelerometers with integrated amplification. As the OEM of its own MEMS-based accelerometer chips and modules, SDI is able to ensure quality, offer custom design and still keep prices highly competitive. SDI accelerometer models are available in ranges from 2 g to more than 20,000 g. Within the standard range (2 g to 400 g), most accelerometers can continue to operate after sustained exposures of up to 10,000 g shock and with limited exposure to temperatures above +200°C. Carefully regulated manufacturing processes ensure that each sensor is consistently made to be virtually identical, allowing users to swap out modules with little or no testing modifications, saving both time and resources. This also allows test engineers to provide a quick plug-and-play solution for most any application with total trust in the accuracy of sensors used within published specifications.

Upcoming Events

August 8 - August 10, 2023

Maximo World 2023

View all Events
banner
80% of Reliabilityweb.com newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
DOWNLOAD NOW
Defect Elimination in the context of Uptime Elements

Defect Elimination means a lot of things to a lot of people. Uptime Elements offers a specific context for defect elimination [DE] as a success factor on the reliability journey [RJ].

Internet of Things Vendors Disrupting the Asset Condition Management Domain at IMC-2022

Internet of Things Vendors Disrupting the Asset Condition Management Domain at IMC-2022 The 36th International Maintenance Conference collocated with the RELIABILITY 4.0 Digital Transformation Conference [East]

Asset Management Technology

The aim of the Asset Management technology domain is to assure that IT/OT systems are focused on creating the value from the assets and that the business can deliver to achieve organizational objectives as informed by risk.

TRIRIGAWORLD AWARDS at MaximoWorld 2022

TRIRIGAWORLD AWARDS honors excellence in space optimization and facility management, A Reliabilityweb.com event to further advance asset management

IMC-2022 Who's Who: The World's Best Run Companies

The International Maintenance Conference (IMC) provides a fresh, positive community-based curated experience to gain knowledge and a positive perspective for advancing reliability and asset management through people, their managers, the strategy, the processes, the data and the technology. The world’s best-run companies are connecting the workforce, management, assets and data to automate asset knowledge that can be leveraged for huge beneficial decisions.

Uptime Elements Root Cause Analysis

Root Cause Analysis is a problem solving method. Professionals who are competent in Root Cause Analysis for problem solving are in high demand.

Reliability Risk Meter

The asset is not concerned with the management decision. The asset responds to physics

Why Reliability Leadership?

If you do not manage reliability culture, it manages you, and you may not even be aware of the extent to which this is happening!

Asset Condition Management versus Asset Health Index

Confusion abounds in language. Have you thought through the constraints of using the language of Asset Health?

Seven Chakras of Asset Management by Terrence O'Hanlon

The seven major asset management chakras run cross-functionally from the specification and design of assets through the asset lifecycle to the decommissioning and disposal of the asset connected through technology