Filter Debris Analysis is a systematic process developed to wash and analyze industrial size filters. TESTOIL has made substantial changes to all aspects of this testing procedure including the fabrication of a new washing instrument, a completely redesigned washing method, an enhanced testing process, and a revamped comprehensive report.
“Our customers depend on us to provide the most reliable oil analysis testing data to ensure machine performance and reduce risks of failure,” said Eric Ambrose, Director of Technical Operations, TESTOIL. “The Filter Debris Analysis upgrade expands on that commitment as well as staying on top of the latest technological developments.”

The first step in the new testing process, and one of the most significant changes, includes a new filter washing instrument that was designed by Eric Ambrose. “The modular design can accommodate more irregular filters such as large sized filters and bag or sock filters,” explains Ambrose. “During this new process, filters are now washed using solvent and compressed air, and there are no electrical components, which allows for the use of flammable solvents.”

In addition, attachments are connected to the filter in order to seal them and perform a true “back-flush” by using solvent and compressed air. The attachments are also capable of performing a more repeatable wash of the filter, and achieve a better representation of debris caught within the media for analysis.

Once the debris stream is collected from the washing unit it is then moved to the lab for analysis. TESTOIL now performs an optical particle count on the debris stream collected from the filter. The purpose of the particle count is to provide secondary particle quantification trending supplementing the debris patch. The particle counter is able to detect a wide range of particles. This range includes particles as small as 5 microns and particles as large as 68 microns. The methodology behind the membrane patch is new as well. Membrane patches are created and gravimetrically weighed to collect debris, to calculate the total amount of debris collected from the filter, and to trend data. A 30 micron patch and 5 micron patch are made and analyzed to differentiate severe wear and normal wear, respectively. The 30 micron patch collects larger particles while the 5 micron patch collects smaller particles. In the apparatus the 30 micron patch sits above the 5 micron patch allowing smaller particles to pass through.

Once debris has been gravimetrically weighed and collected on both the 5 and 30 micron patches, analysts view the 30 micron patch under a microscope. A representative magnified image of the wear particles is then captured. The image of the wear particles is found on the report.

Lastly, the 5 micron and 30 micron patches are analyzed with XRF Spectroscopy. The XRF can determine the range of elements present as well as their proportions within the sample.

Once testing is complete the data is assembled in a comprehensive test report. Analysts review the data and conclude an appropriate determination of the machine’s condition. In addition, the report displays images of the filter and patches, microscopic views of the patches, and pie charts displaying elemental data.

TESTOIL is a full service oil testing laboratory owned by Insight Services. Since 1988 the laboratory has been providing fast and reliable oil analysis results across all industries throughout the Americas. The firm’s comprehensive range of oil analysis services assists reliability engineers with condition monitoring and identification of machine wear. TESTOIL employs a sophisticated diagnostic technology that assists their Machine Condition Analysts in making equipment and lubrication condition assessments.

For more information about TESTOIL please visit

Upcoming Events

August 9 - August 11 2022

MaximoWorld 2022

View all Events
80% of newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
“Steel-ing” Reliability in Alabama

A joint venture between two of the world’s largest steel companies inspired innovative approaches to maintenance reliability that incorporate the tools, technology and techniques of today. This article takes you on their journey.

Three Things You Need to Know About Capital Project Prioritization

“Why do you think these two projects rank so much higher in this method than the first method?” the facilitator asked the director of reliability.

What Is Industrial Maintenance as a Service?

Industrial maintenance as a service (#imaas) transfers the digital and/or manual management of maintenance and industrial operations from machine users to machine manufacturers (OEMs), while improving it considerably.

Three Things You Need to Know About Criticality Analysis

When it comes to criticality analysis, there are three key factors must be emphasized.

Turning the Oil Tanker

This article highlights the hidden trap of performance management systems.

Optimizing Value From Physical Assets

There are ever-increasing opportunities to create new and sustainable value in asset-intensive organizations through enhanced use of technology.

Conducting Asset Criticality Assessment for Better Maintenance Strategy and Techniques

Conducting an asset criticality assessment (ACA) is the first step in maintaining the assets properly. This article addresses the best maintenance strategy for assets by using ACA techniques.

Harmonizing PMs

Maintenance reliability is, of course, an essential part of any successful business that wants to remain successful. It includes the three PMs: predictive, preventive and proactive maintenance.

How an Edge IoT Platform Increases Efficiency, Availability and Productivity

Within four years, more than 30 per cent of businesses and organizations will include edge computing in their cloud deployments to address bandwidth bottlenecks, reduce latency, and process data for decision support in real-time.

MaximoWorld 2022

The world's largest conference for IBM Maximo users, IBM Executives, IBM Maximo Partners and Services with Uptime Elements Reliability Framework and Asset Management System is being held Aug 8-11, 2022