FREE: Introduction to Uptime Elements Reliability Framework and Asset Management System

In many cases people only focus on the peaks in the vibration spectrum; especially the tops of the peaks. But what happens at the bottom of the spectrum is also very important. The "noise floor", and the shape of the base of the peak, provides useful information.

The Noise Floor

The bottom of the spectrum is the noise floor - but we will focus on the area of the spectrum between the peaks. If the machine is running smoothly, the area between the peaks will be flat and have a low amplitude. But if there is a source of "broadband" energy, it can generate vibration across the entire spectrum or just in specific areas. Rubs, impacts, looseness, cavitation, turbulence, and flow noise can all generate this "energy".

The "energy" can excite natural frequencies, so in specific areas we might see the noise floor rise up. Depending upon the amount of damping, and the amplitude of the energy, the spectrum might rise up quite significantly.

The noise itself can be quite focused (i.e. we will see it in a small band of frequency), so we might see the area around the pump vane rate rise up if there is cavitation. And we might see a large, broad peak below 1X if there is flow turbulence.

Broad Based Peaks

If there is a "pure" source of vibration, such as unbalance or the pump vane rate, then we expect to see a narrow peak. However if we look at the base of the peak and see that it is quite broad, we need to ask; "why is it so?"

There are actually a few reasons:

1. If that source of vibration is exciting a resonance, then the base will be broad - and the amplitude of the peak will be much higher than it would be if there were no resonance.

2. If there were sidebands, however your resolution was insufficient to be able to see the sidebands, then the peak may look broad. It is therefore important to use 3200+ lines to make sure you know what you are dealing with.

3. As mentioned above, if there is cavitation, the area around the pump vane rate peak may also be elevated.

There are two more very important points:

1. If you see an elevated noise floor, check the amplitude scale. If the highest peak in the spectrum has a very low amplitude, the noise floor will "appear" to be higher than what you are used to. Likewise, if the scale is set to a high amplitude, you may never notice a raised noise floor. That is just another reason why a logarithmic scale is very useful.

2. If there is a raised noise floor - look in the time waveform. The waveform will show you the impacts, rubs, bursts of energy from cavitation, and so on. Of course, you need to collect the time waveform correctly, but that is covered in another tip.

Here are a few examples:

Here is an interesting example. The first spectrum is 800 lines. Notices the broad bases of the peaks. Could it be resonance. The next spectrum is 3200 lines - you can see there is more to it. And the third spectrum is zoomed in to the base of the peaks.

This looks very noisy, however the amplitude is very low:

Noise Low Amplitude

This case looks like there is no noise - but the peaks are very high in amplitude:

Noise High Amplitude

Here is the same data in log scale:

Noise High Amplitude Log

Here is a sample from a pump that was cavitating:

Cavitating Pump

And here is the time waveform:

Cavitation Time Waveform

Tip provided by: Jason Tranter
USA Tel: +1 256.779.6367
Australia Tel: +61 3 5989 7285

Upcoming Events

August 8 - August 10, 2023

Maximo World 2023

View all Events
80% of newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
IMC-2022 Who's Who: The World's Best Run Companies

The International Maintenance Conference (IMC) provides a fresh, positive community-based curated experience to gain knowledge and a positive perspective for advancing reliability and asset management through people, their managers, the strategy, the processes, the data and the technology.

Uptime Elements Root Cause Analysis

Root Cause Analysis is a problem solving method. Professionals who are competent in Root Cause Analysis for problem solving are in high demand.

Reliability Risk Meter

The asset is not concerned with the management decision. The asset responds to physics

Why Reliability Leadership?

If you do not manage reliability culture, it manages you, and you may not even be aware of the extent to which this is happening!

Asset Condition Management versus Asset Health Index

Confusion abounds in language. Have you thought through the constraints of using the language of Asset Health?

Seven Chakras of Asset Management by Terrence O'Hanlon

The seven major asset management chakras run cross-functionally from the specification and design of assets through the asset lifecycle to the decommissioning and disposal of the asset connected through technology

Reliability Leader Fluid Cleanliness Pledge

Fluid Cleanliness is a Reliability Achievement Strategy as well as an asset life extension strategy

MaximoWorld 2022 Conference Austin Texas

Connect with leading maintenance professionals, reliability leaders and asset managers from the world's best-run companies who are driving digital reinvention.

“Steel-ing” Reliability in Alabama

A joint venture between two of the world’s largest steel companies inspired innovative approaches to maintenance reliability that incorporate the tools, technology and techniques of today. This article takes you on their journey.

Three Things You Need to Know About Capital Project Prioritization

“Why do you think these two projects rank so much higher in this method than the first method?” the facilitator asked the director of reliability.