From an asset management perspective, it is necessary to understand the root cause of plant failure in order establish effective condition monitoring and asset management strategies. AIG and other organizations have conducted considerable research into the reasons for plant failure. Not surprisingly, many plant failure studies into mechanical and electrical equipment failures reveal similar system failure root causes, which are indicated in Figure 3
and 4.

The data for Figure 3 has been taken from a number of industries of varying ages and capacity factors. In general, the data indicates that human intervention in the machine in the form of lubrication quality and contamination control is the primary factor in the longevity of mechanical plants. The data also indicates that lubrication analysis is the prime control method of determining mechanical plant condition, particularly in rotating mechanical plants.

Figure 3 - Primary Causes of Mechinical Equipment Failure

Figure 4 depicts the systems within electrical plants that have been the principle failure cause for those plants. It is interesting to note that mechanical systems within electrical plants are the prime failure areas. The obvious connotation from this data is that the complete suite of both mechanical and electrical testing and condition determination regimes must be applied to all plant types. The complimentary nature of the condition assessment techniques requires that the systems used to record and report on plant condition need to be fully integrated, and contain data, analysis and prognosis from disparate CM tools to give a complete description of the plant

Figure 4-Primary Causes of Electrical Plant Failure

With these failure modes in mind, to obtain an excellent rating from insurers the asset management and condition monitoring technologies that are required for a utility include:


. Online vibration spectral analysis of main plant including turbines, generators, feed pumps.
. Online vibration measurement and trips on auxiliary plant.
. Spectro chemical and Microscopic wear debris analysis of all main lube oil systems.
. Infrared thermography of all main plant including turbine casings, boilers, auxiliary plant bearings.
. Eddy current testing of condensers
. Time of flight ultrasonics (TOFD)
. Eddy current & remote field testing (EC & RFT)
. Remote visual inspection (RVI)
. Replication
. Bore oxide ultrasonics
. Mini creep testing
. X Ray analysis


. Dissolved gas analysis (DGA)
. Dissolved moisture
. Oil quality (acid, interfacial tension, dielectric strength, dielectric dissipation factor)
. Particle count
. Dissolved metals and sulphur
. Furans
. Dielectric loss angle
. Insulation resistance
. Dielectric dissipation factor
. Insulation recovery voltage
. Partial discharge
. Time reflectometry
. Radio frequency emission
. Transfer function

Risk Assessment Tools:

. HAZOPS - Hazard & Operability Studies
. QRA - Quantitative Risk Assessment
. WRAC - Workplace Risk Assessment and Control
. RCM-RA - Reliability Centred Maintenance Risk Assessment

It should be carefully noted however that the existence of these systems at a site is not the determining factor for a risk management engineer. The critical aspect is how these systems are utilized in the asset management planning cycle. All of the above systems require analysis and prognosis development by humans, and the qualifications and experience of the people conducting the testing and performing the analysis are of crucial importance to the insurance industry.

Tip from Ian Barnard, Author, Engineering Asset Management an Insurance Perspective

Upcoming Events

August 9 - August 11 2022

MaximoWorld 2022

View all Events
80% of newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
“Steel-ing” Reliability in Alabama

A joint venture between two of the world’s largest steel companies inspired innovative approaches to maintenance reliability that incorporate the tools, technology and techniques of today. This article takes you on their journey.

Three Things You Need to Know About Capital Project Prioritization

“Why do you think these two projects rank so much higher in this method than the first method?” the facilitator asked the director of reliability.

What Is Industrial Maintenance as a Service?

Industrial maintenance as a service (#imaas) transfers the digital and/or manual management of maintenance and industrial operations from machine users to machine manufacturers (OEMs), while improving it considerably.

Three Things You Need to Know About Criticality Analysis

When it comes to criticality analysis, there are three key factors must be emphasized.

Turning the Oil Tanker

This article highlights the hidden trap of performance management systems.

Optimizing Value From Physical Assets

There are ever-increasing opportunities to create new and sustainable value in asset-intensive organizations through enhanced use of technology.

Conducting Asset Criticality Assessment for Better Maintenance Strategy and Techniques

Conducting an asset criticality assessment (ACA) is the first step in maintaining the assets properly. This article addresses the best maintenance strategy for assets by using ACA techniques.

Harmonizing PMs

Maintenance reliability is, of course, an essential part of any successful business that wants to remain successful. It includes the three PMs: predictive, preventive and proactive maintenance.

How an Edge IoT Platform Increases Efficiency, Availability and Productivity

Within four years, more than 30 per cent of businesses and organizations will include edge computing in their cloud deployments to address bandwidth bottlenecks, reduce latency, and process data for decision support in real-time.

MaximoWorld 2022

The world's largest conference for IBM Maximo users, IBM Executives, IBM Maximo Partners and Services with Uptime Elements Reliability Framework and Asset Management System is being held Aug 8-11, 2022