FREE copy of the Uptime Elements Implementation Guide once you subscribe to Reliability Weekly

From an asset management perspective, it is necessary to understand the root cause of plant failure in order establish effective condition monitoring and asset management strategies. AIG and other organizations have conducted considerable research into the reasons for plant failure. Not surprisingly, many plant failure studies into mechanical and electrical equipment failures reveal similar system failure root causes, which are indicated in Figure 3
and 4.

The data for Figure 3 has been taken from a number of industries of varying ages and capacity factors. In general, the data indicates that human intervention in the machine in the form of lubrication quality and contamination control is the primary factor in the longevity of mechanical plants. The data also indicates that lubrication analysis is the prime control method of determining mechanical plant condition, particularly in rotating mechanical plants.

Figure 3 - Primary Causes of Mechinical Equipment Failure

Figure 4 depicts the systems within electrical plants that have been the principle failure cause for those plants. It is interesting to note that mechanical systems within electrical plants are the prime failure areas. The obvious connotation from this data is that the complete suite of both mechanical and electrical testing and condition determination regimes must be applied to all plant types. The complimentary nature of the condition assessment techniques requires that the systems used to record and report on plant condition need to be fully integrated, and contain data, analysis and prognosis from disparate CM tools to give a complete description of the plant

Figure 4-Primary Causes of Electrical Plant Failure

With these failure modes in mind, to obtain an excellent rating from insurers the asset management and condition monitoring technologies that are required for a utility include:


. Online vibration spectral analysis of main plant including turbines, generators, feed pumps.
. Online vibration measurement and trips on auxiliary plant.
. Spectro chemical and Microscopic wear debris analysis of all main lube oil systems.
. Infrared thermography of all main plant including turbine casings, boilers, auxiliary plant bearings.
. Eddy current testing of condensers
. Time of flight ultrasonics (TOFD)
. Eddy current & remote field testing (EC & RFT)
. Remote visual inspection (RVI)
. Replication
. Bore oxide ultrasonics
. Mini creep testing
. X Ray analysis


. Dissolved gas analysis (DGA)
. Dissolved moisture
. Oil quality (acid, interfacial tension, dielectric strength, dielectric dissipation factor)
. Particle count
. Dissolved metals and sulphur
. Furans
. Dielectric loss angle
. Insulation resistance
. Dielectric dissipation factor
. Insulation recovery voltage
. Partial discharge
. Time reflectometry
. Radio frequency emission
. Transfer function

Risk Assessment Tools:

. HAZOPS - Hazard & Operability Studies
. QRA - Quantitative Risk Assessment
. WRAC - Workplace Risk Assessment and Control
. RCM-RA - Reliability Centred Maintenance Risk Assessment

It should be carefully noted however that the existence of these systems at a site is not the determining factor for a risk management engineer. The critical aspect is how these systems are utilized in the asset management planning cycle. All of the above systems require analysis and prognosis development by humans, and the qualifications and experience of the people conducting the testing and performing the analysis are of crucial importance to the insurance industry.

Tip from Ian Barnard, Author, Engineering Asset Management an Insurance Perspective

Upcoming Events

August 8 - August 10, 2023

Maximo World 2023

View all Events
80% of newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
Defect Elimination in the context of Uptime Elements

Defect Elimination means a lot of things to a lot of people. Uptime Elements offers a specific context for defect elimination [DE] as a success factor on the reliability journey [RJ].

Internet of Things Vendors Disrupting the Asset Condition Management Domain at IMC-2022

Internet of Things Vendors Disrupting the Asset Condition Management Domain at IMC-2022 The 36th International Maintenance Conference collocated with the RELIABILITY 4.0 Digital Transformation Conference [East]

Asset Management Technology

The aim of the Asset Management technology domain is to assure that IT/OT systems are focused on creating the value from the assets and that the business can deliver to achieve organizational objectives as informed by risk.


TRIRIGAWORLD AWARDS honors excellence in space optimization and facility management, A event to further advance asset management

IMC-2022 Who's Who: The World's Best Run Companies

The International Maintenance Conference (IMC) provides a fresh, positive community-based curated experience to gain knowledge and a positive perspective for advancing reliability and asset management through people, their managers, the strategy, the processes, the data and the technology. The world’s best-run companies are connecting the workforce, management, assets and data to automate asset knowledge that can be leveraged for huge beneficial decisions.

Uptime Elements Root Cause Analysis

Root Cause Analysis is a problem solving method. Professionals who are competent in Root Cause Analysis for problem solving are in high demand.

Reliability Risk Meter

The asset is not concerned with the management decision. The asset responds to physics

Why Reliability Leadership?

If you do not manage reliability culture, it manages you, and you may not even be aware of the extent to which this is happening!

Asset Condition Management versus Asset Health Index

Confusion abounds in language. Have you thought through the constraints of using the language of Asset Health?

Seven Chakras of Asset Management by Terrence O'Hanlon

The seven major asset management chakras run cross-functionally from the specification and design of assets through the asset lifecycle to the decommissioning and disposal of the asset connected through technology