It was clear to me that something had been left out of this process. Looking at the reality of a manufacturing environment, I asked myself this question:

Question: "How would our manufacturing director react if I told him the process was down because we made the decision to run that part to failure?"

Answer: He/she would first absolutely crazy. I can just hear it, "We planned on letting this part fail!" Then, he/she would want to know how long the process would be down and do we have that part.

You as the maintenance manager or supervisor would have some real explaining to do, especially, if you didn't have the spare part on hand. The missing piece in the RCM process was right in front of my face on a daily basis. When your business is in a sold out condition, down time can be just as important as up time. RCM was designed to maintain the functionality of a process or piece of equipment. It never considered the function of reducing equipment downtime.

Analyzing equipment functionality on its own, RCM does a fantastic job of developing a maintenance strategy. However, it falls short of developing a complete maintenance strategy by failing to address the reduction of consequences when "no scheduled maintenance" is you strategy. Consequence reduction is a key expectation of maintenance in any manufacturing environment. Downtime is critical to our manufacturing partners and we are expected to reduce it in any way we can. So can consequence reduction be addressed as part of an RCM analysis? The answer is yes! It can be, and it should be!

Looking at the RCM decision diagram below, run the failure mode of a "Photo-eye fails" through the decision diagram. Making the assumption that the failure of this switch is evident to the operator and has no effect on health, safety or environment, we run the failure down through the operational consequences portion of the decision diagram.

RCM Blitz Decision Process

As we run this failure through the diagram, we answer the following questions:

1. Is there an on-condition task that would detect the failure?

          Answer: No - Failure of this electronic device occurs too quickly to be predicted.

2. Is there a scheduled rework, discard, or inspection task that would reduce the failure rate?

          Answer: No - The failure is electronic in nature and random, simply looking at the device or checking its function will not indicate if failure is about to occur.

3. Is there a business case for redesign?

          Answer: No - The component has been in service several years with no failures.

The decision process has leads us to "No scheduled maintenance", this where RCM used to end. Note we have added to this box the words "Implement a consequence reduction strategy". The tells the RCM team that making the decision to run to failure is ok, provided they now consider how to reduce the consequences of the failure or the mean time to restore. This can be accomplished several ways so I ask teams to take the following things into consideration when asked to reduce consequences:

1. Spare parts - If we are going to allow this component to run to failure, should we keep the part on hand? Run this part through a part decision diagram and make this decision.

2. Replacement Procedure - Is there a procedure in place that describes the most effective way to replace this part including, where is the part located, a lock-out, tag-out try-out procedure? Describe how the component can be changed and aligned to ensure functionality.

3. LOTOTO- Ensure a lock-out, tag-out, try-out procedure exists

Assessing each of these things can significantly reduce equipment down time or mean time to restore (MTTR). The assessment and reduction of failure consequences across an entire RCM analysis will result significant savings to your company and save your RCM program some serious grief.

Upcoming Events

August 9 - August 11 2022

MaximoWorld 2022

View all Events
80% of newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
Conducting Asset Criticality Assessment for Better Maintenance Strategy and Techniques

Conducting an asset criticality assessment (ACA) is the first step in maintaining the assets properly. This article addresses the best maintenance strategy for assets by using ACA techniques.

Harmonizing PMs

Maintenance reliability is, of course, an essential part of any successful business that wants to remain successful. It includes the three PMs: predictive, preventive and proactive maintenance.

How an Edge IoT Platform Increases Efficiency, Availability and Productivity

Within four years, more than 30 per cent of businesses and organizations will include edge computing in their cloud deployments to address bandwidth bottlenecks, reduce latency, and process data for decision support in real-time.

MaximoWorld 2022

The world's largest conference for IBM Maximo users, IBM Executives, IBM Maximo Partners and Services with Uptime Elements Reliability Framework and Asset Management System is being held Aug 8-11, 2022

6 Signs Your Maintenance Team Needs to Improve Its Safety Culture

When it comes to people and safety in industrial plants, maintenance teams are the ones who are most often in the line of fire and at risk for injury or death.

Making Asset Management Decisions: Caught Between the Push and the Pull

Most senior executives spend years climbing through the operational ranks. In the operational ranks, many transactional decisions are required each day.

Assume the Decision Maker Is Not Stupid to Make Your Communication More Powerful

Many make allowances for decision makers, saying some are “faking it until they make it.” However, this is the wrong default position to take when communicating with decision makers.

Ultrasound for Condition Monitoring and Acoustic Lubrication for Condition-Based Maintenance

With all the hype about acoustic lubrication instruments, you would think these instruments, once turned on, would do the job for you. Far from it!

Maintenance Costs as a Percent of Asset Replacement Value: A Useful Measure?

Someone recently asked for a benchmark for maintenance costs (MC) as a percent of asset replacement value (ARV) for chemical plants, or MC/ARV%.