FREE copy of the Uptime Elements Implementation Guide once you subscribe to Reliability Weekly

How things fail

How things fail

"Reliability has two broad ranges of meanings:

  1. Qualitatively-operating without failure for long periods of time just as the advertisements for sale suggest, and
  2. Quantitatively-where life is predictable long and measurable in test to assure satisfactory field conditions are achieved to meet customer requirements.

Reliability is concerned with failure-free operation for periods of time, whereas quality is concerned with avoiding non-conformances at a specified time prior to shipment thus reliability measures a dynamic situation but quality measures a static situation. As in physics, statics is easier to understand and calculate than dynamics which involves higher levels of math and greater mental capabilities for comprehension."

- H. Paul Barringer

We study failed items for the same reason we do autopsies on humans: we want the data and we want it categorized correctly for making important decisions.

Failures require:

  1. A time origin which must be unambiguously defined;
  2. A scale for measuring the passage of time/starts/stops/etc., which motivates failure;
  3. The meaning of failure must be entirely clear for recording the event.

Failures during an asset's life can be attributed to the following causes:

Design Failures: This class of failures take place due to inherent design flaws in the asset or system. In a well-designed system, this class of failures should make a very small contribution to the total number of failures. Research by Winston Ledet (outlined in Don't Just Fix It, Improve It! A Journey to the Precision Domain) showed that approximately 20% of corrective work orders could be traced to poor design, build and installation issues.

Failure patternsFailure patterns (Courtesy of Reliabilityweb.com)

Infant Mortality: This class of failures cause new (and repaired) assets to fail. In "Reliability-Centered Maintenance" by Nowlan and Heap, up to 72% of failures are in the "worse new" or "worse repaired" (infant mortality) category.

Infant mortality random failure patternInfant mortality random failure pattern (Courtesy of Reliabilityweb.com)

Random Failures: Random failures can occur during the entire life of an asset. These failures are also referenced in "Reliability-Centered Maintenance" by Nowlan and Heap. Up to 77-92% of failures are random in pattern.

Wear Out: Once an asset has reached the end of its useful life, degradation of component characteristics will cause assets to fail. Ledet research stated that "wear out" as a cause for a corrective work order is 12% or less. Nowlan and Heap and related research shows 8-23% of failures are wear out related.

The following graphs shows the contribution of the different failure modes towards the overall failure rate.


Contribution of different failure modes towards component failure

Where does preventive maintenance fit with these patterns?

Where does what some call "predictive" maintenance, but we call asset condition management, fit in?

Where does prescriptive maintenance fit with these patterns?

What else should we understand about failure?

Find Terrence O'Hanlon on LinkedIn.

Terrence O'Hanlon

Terrence O’Hanlon, CMRP, and CEO of Reliabilityweb.com® and Publisher for Uptime® Magazine, is an asset management leader, specializing in reliability and operational excellence. He is a popular keynote presenter and is the coauthor of the book, 10 Rights of Asset Management: Achieve Reliability, Asset Performance and Operational Excellence. www.reliabilityweb.com

Upcoming Events

August 8 - August 10, 2023

Maximo World 2023

View all Events
banner
80% of Reliabilityweb.com newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
DOWNLOAD NOW
Defect Elimination in the context of Uptime Elements

Defect Elimination means a lot of things to a lot of people. Uptime Elements offers a specific context for defect elimination [DE] as a success factor on the reliability journey [RJ].

Internet of Things Vendors Disrupting the Asset Condition Management Domain at IMC-2022

Internet of Things Vendors Disrupting the Asset Condition Management Domain at IMC-2022 The 36th International Maintenance Conference collocated with the RELIABILITY 4.0 Digital Transformation Conference [East]

Asset Management Technology

The aim of the Asset Management technology domain is to assure that IT/OT systems are focused on creating the value from the assets and that the business can deliver to achieve organizational objectives as informed by risk.

TRIRIGAWORLD AWARDS at MaximoWorld 2022

TRIRIGAWORLD AWARDS honors excellence in space optimization and facility management, A Reliabilityweb.com event to further advance asset management

IMC-2022 Who's Who: The World's Best Run Companies

The International Maintenance Conference (IMC) provides a fresh, positive community-based curated experience to gain knowledge and a positive perspective for advancing reliability and asset management through people, their managers, the strategy, the processes, the data and the technology. The world’s best-run companies are connecting the workforce, management, assets and data to automate asset knowledge that can be leveraged for huge beneficial decisions.

Uptime Elements Root Cause Analysis

Root Cause Analysis is a problem solving method. Professionals who are competent in Root Cause Analysis for problem solving are in high demand.

Reliability Risk Meter

The asset is not concerned with the management decision. The asset responds to physics

Why Reliability Leadership?

If you do not manage reliability culture, it manages you, and you may not even be aware of the extent to which this is happening!

Asset Condition Management versus Asset Health Index

Confusion abounds in language. Have you thought through the constraints of using the language of Asset Health?

Seven Chakras of Asset Management by Terrence O'Hanlon

The seven major asset management chakras run cross-functionally from the specification and design of assets through the asset lifecycle to the decommissioning and disposal of the asset connected through technology