FREE: Introduction to Uptime Elements Reliability Framework and Asset Management System

CTG is indicative of conductive moisture and dirt in and around the stator insulation system. As contaminants build up, the apparent conductive surface area of winding insulation of the motor grows, which is comparable to increasing the size of one plate of a capacitor as illustrated in Figure 8-21.

Figure 8-21

The value of the variable “plate” can be measured and trended over time as the change in capacitance-to-ground.

By using the ‘Relative Comparison’ analysis technique you would take the initial (baseline) readings, stored for later use, and compare them to any future values recorded. When a significant rise occurs it is seen in the trend data. An investigation into the cause may find:

  • Internal motor contamination
  • A problem with moisture infiltration into the motor
  • A problem with the circuit cables leading to the motor.

Capacitance-to-Ground CTG - Is a natural characteristic of a motor circuit which starts to increase when the motor circuit is affected by its environment, due to moisture ingress and conductive contaminant(s) accumulating on the surface of insulation materials providing a path to ground for leakage current. Increased capacitance due to the above plus insulation system deterioration are the two conditions needed for resistance-to-ground reading deterioration

Capacitance in the Conductor Path – Capacitance in the conductor path is performed in analysis of 3 phase motor winding condition by comparison of impedance and inductance readings with the rotor in two different positions 90º apart.

Readings changing in parallel and rotating in sequence with each other indicate no serious problem, but readings that “cross” and aren’t changing in parallel with rotor position and other readings may indicate a fault. Capacitance of the cables to the motor may be the problem especially in long runs to the motor. The following case study illustrates this point.

Capacitance-to-Ground Case Study #1:– What’s wrong according to the data in Figure 8-22? It would appear that Motors #2, #3 and #4 are grounded and may be contaminated as well with something providing a path to ground over their insulation systems. It is also possible that the Capacitance-to ground (CTG) reading may be affected by cable length if the motors are at progressively greater distance from the motor control center where the readings were taken.

Figure 8-22 - MCrA Tests of 4 Identical Motors

The next case study shows how it is possible to misinterpret data.

Capacitance-to- Ground Case Study #2 - A PdM Technician in a Hot Rolling Mill at a steel company noticed that capacitance-to-ground of some motors was higher than others. He assumed that since motors that had higher readings were at the “dirty” end of the run-out table that the problem was due to contamination. He had the worst ones pulled and cleaned. Capacitance did not change significantly. Further analysis showed that the motors with the longest cable runs had the highest capacitance-to-ground readings. Plot of all 145 motors showed trend (upward) consistent with the fact that the longer the cable run from MCC to motor, the higher the capacitance-to-ground. The analyst took this into account for later decisions.

Resistance-to-Ground – The final test completed in the suite of tests conducted on both AC and DC motors, which includes DA and PI tests is covered in Chapter 6 (Volume 2).

Tip from Motor Electrical Predictive Maintenance & Testing Vol. 3 by Jack Nicholas & Geoffery Generalovic


Upcoming Events

August 8 - August 10, 2023

Maximo World 2023

View all Events
banner
80% of Reliabilityweb.com newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
DOWNLOAD NOW
IMC-2022 Who's Who: The World's Best Run Companies

The International Maintenance Conference (IMC) provides a fresh, positive community-based curated experience to gain knowledge and a positive perspective for advancing reliability and asset management through people, their managers, the strategy, the processes, the data and the technology.

Uptime Elements Root Cause Analysis

Root Cause Analysis is a problem solving method. Professionals who are competent in Root Cause Analysis for problem solving are in high demand.

Reliability Risk Meter

The asset is not concerned with the management decision. The asset responds to physics

Why Reliability Leadership?

If you do not manage reliability culture, it manages you, and you may not even be aware of the extent to which this is happening!

Asset Condition Management versus Asset Health Index

Confusion abounds in language. Have you thought through the constraints of using the language of Asset Health?

Seven Chakras of Asset Management by Terrence O'Hanlon

The seven major asset management chakras run cross-functionally from the specification and design of assets through the asset lifecycle to the decommissioning and disposal of the asset connected through technology

Reliability Leader Fluid Cleanliness Pledge

Fluid Cleanliness is a Reliability Achievement Strategy as well as an asset life extension strategy

MaximoWorld 2022 Conference Austin Texas

Connect with leading maintenance professionals, reliability leaders and asset managers from the world's best-run companies who are driving digital reinvention.

“Steel-ing” Reliability in Alabama

A joint venture between two of the world’s largest steel companies inspired innovative approaches to maintenance reliability that incorporate the tools, technology and techniques of today. This article takes you on their journey.

Three Things You Need to Know About Capital Project Prioritization

“Why do you think these two projects rank so much higher in this method than the first method?” the facilitator asked the director of reliability.