FREE copy of the Uptime Elements Implementation Guide once you subscribe to Reliability Weekly

Your journey starts at the Virtual Reliability Development Summit

One note shown in the figures indicates that it is essential to have an excellent work management process, including excellent planning and scheduling in order to effectively manage the findings of the CM program. A common mistake made in CM programs is not having an adequate work management process, including a planning and scheduling system to follow through on the CM program’s findings, so that corrective action is taken in a timely and cost-effective way. Additional detail on planning and scheduling is provided in Appendix A.

Another common mistake is not having all the appropriate machinery in the program. Very often plants will elect to only monitor those so-called “critical few” machines, leaving the others out of the program. Generally speaking this is a mistake. It’s very difficult to live in two worlds: one where you care for some of your machinery, the other where you don’t care for the rest, or you care much less. As shown in Figure 13-1 through 13-2, it’s essential to have all of the appropriate machinery in the program if you want to operate in a lowest cost position. Further, getting the first few machines into the database is typically the most expensive part of getting started. After that, each additional machine added is likely to cost incrementally less.

A third common mistake is not providing adequate training and skill development to the CM staff (e.g., technicians, engineers, and managers). Each person in the program should have a training and skill development plan, which is updated annually. Training, especially the initial training, can be intensive and expensive, but is essential for an effective program. As stated earlier, “If you think education is expensive, try ignorance.” Technicians should be certified as practitioners in the skill required (e.g., Vibration Analyst Level I or II, Tribologist Level I or II). While this certification will not guarantee competence, it will set expectations for learning and validation of that learning. The training and certification effort must be backed up by measures of the program’s effectiveness. For example, measures might include the number of machines in the program, CM schedule compliance, CM action compliance (action taken before a failure occurred, and failure to detect), or the number of times that machinery or equipment failed without detection. Costs for the program and overall costs should also be measured. If we’re doing the right things, our costs should be declining, and our plant availability and reliability should be improving.

A fourth set of common mistakes is not having operators involved in (1) monitoring the equipment from a production process view, (2) helping select and schedule the monitoring of the equipment, (3) doing routine “look, listen, feel, and smell” for detecting problems, or not taking adequate care to avoid inducing defects. Operators cannot only detect defects, they can and must also take a very proactive approach to avoid inducing defects in the first place by improving operating standards and procedures. While it’s common that CM technology can detect defects before an operator, having operations and maintenance work as a team to assure highly reliable equipment is essential.

Finally, a fifth common mistake is not having one person responsible for the conduct of the CM program and for the follow up of its findings. Distribution of the various technologies across a number of supervisors is not good practice and substantially dilutes the potential effectiveness of the program. Having one person responsible provides good alignment and communication regarding the structure and goals of the program and is essential. 

Tip provided by What Tool? When? by Ron Moore

Upcoming Events

August 7 - August 10, 2023

MaximoWorld 2023

View all Events
A weekly collection of recommended articles and videos to boost your reliability journey. Right in your inbox