Priority vs Criticality

Priority vs Criticality

by Bill Keeter

Priority something that is more important than other things and needs to be done or dealt with first criticality a relative ranking of equipment based on the probability of its failure and the consequences of the failure.

One of the most misused terms in the maintenance reliability world is criticality. Organizations often use the word criticality when what they are really talking about is criticalness. The fact that an item of equipment is critical to an organization’s success doesn’t define its criticality. This article will clarify the difference between critical items and criticality of items.

Why It Matters

Maintenance reliability efforts consist of two different types of work. There is the daily work of keeping equipment running by managing work orders and responding to emergencies, and the long-range work of activities designed to improve overall performance. The daily work requires a set of priorities to ensure the most important work is done first. The long-range work also requires a set of priorities that ensure improvement efforts are focused on where the most benefit can be gained for the least cost and effort.

Criticality is a function of probability and consequence of failure. It, therefore, can change based on efforts that either reduce probability, consequence, or both. Criticalness is a singular property and does not change unless another, more essential, item of equipment is installed in the system. It is possible for an extremely critical item to have a low criticality. In other words, criticality is useful for setting strategic priorities so long-term reliability efforts are focused on the right things; criticalness is useful for setting daily work priorities so the most important daily work is accomplished on the most essential items.

An Example

Everyone would agree that a turbine compressor in a primary gas compression train is essential to successfully compress and export natural gas. If it fails and there is no backup, the system will be unable to produce output. Its criticalness is high and the priority of daily work scheduled for it should be high as well. However, it may be well maintained by an effective combination of preventive maintenance (PM) and condition monitoring activities that reduce its probability of failure to an extremely low number, which means its criticality can be low compared to other items of equipment. Focusing reliability improvement efforts on the unit would likely be a waste of valuable resources that could better be used to improve reliability in other items of equipment.

Using Criticalness to Set Daily Priorities

Criticalness and work type are often used to create a ranking index for maintenance expenditures (RIME). The first step is to understand how essential certain types of equipment are in order to determine their criticalness. A starting point might be rankings, such as those in Table 1. These are only suggestions. An organization will want to set their own definitions for their system.

Item TypeCriticalness (Process Importance)

Safety/Environmental Protection


Utilities – Not Spared*


Utilities – Spared


Essential Production – Not Spared


Essential Production – Spared


Essential Production Support – Not Spared


Essential Production Support – Spared


Non-Essential Production Support


Personnel Comfort


Buildings and Grounds


Table 1: Equipment Criticalness Ranking

The next step is to determine work order type priorities, such as those in Table 2.

WO TypePriority

Immediate Threat to Health, Safety, or Environment


Potential Threat to Health, Safety, or Environment


Immediate Production Loss


Potential Production Loss


Preventive Maintenance/Condition Monitoring


Corrective Maintenance








Appearance (Grass mowing, etc.)


Table 2: Work Order Type Priorities

These rankings are multiplied together to produce a priority number that can be managed based on local policy. This should be determined by a cross-functional team consisting of operations, maintenance and appropriate health, safety and environment (HSE) personnel.

Daily work now can be prioritized so the critical few work orders are accomplished first. It is important to not let work languish at the bottom of the index. This work can be managed be either designating a certain percentage of planned jobs to be done on work that has a priority number below a certain value, or by adding some specified number to a work order’s priority ranking each week so it floats upward (Figure 1).


Figure 1: Sample RIME chart

Using Criticality to Set Strategic Priorities

Determining criticality is a more complex process because it involves the interaction of probability of failure and consequence of failure. Criticality requires a level of granularity that allows the organization to recognize the few high criticality items that can lead to major improvements in performance. Applying the power law to the Pareto principle shows that it is possible for as little as five percent of the equipment in a facility to cause more than 50 percent of its losses. Criticality ranking systems with a granularity that only allows the identification of the top 25 percent of criticality are not strong enough to accomplish the goal.

Criticality is added from layer to layer in the hierarchy, so a good method is to do criticality at a high level with just a few questions (Figure 2). For instance, it is possible to divide a large facility into areas and determine area criticality first. The team can then drill down into the most critical areas by identifying system level criticality. The most critical systems or items can be then focused on using tools, such as reliability centered maintenance (RCM), to determine the best improvement strategy.


Figure 2: The additive property of criticality

The starting point for criticality analysis is to produce severity rankings for various impacts. A table similar to Table 3 would be a good starting point.

Table 3: Sample Severity Ranking Table

The severity rankings used should be in alignment with corporate guidelines for safety and environmental performance. Again, a cross-functional team of appropriate personnel is required to achieve consensus on rankings.

It is a simple process to rank each failure by maximum severity in each area and add them together to get an overall severity. The organization can then sort from highest to lowest to help prioritize performance improvement initiatives.


Prioritizing daily and strategic work efforts ensures that the limited resources in the organization are used as efficiently and effectively as possible. Using separate systems to perform prioritization ensures that a constant property is used to manage daily work and that long-range efforts are adjusted based on the reduction in criticality that comes from those efforts.

Keep reading...Show less

Upcoming Events

August 9 - August 11 2022

MaximoWorld 2022

View all Events
80% of newsletter subscribers report finding something used to improve their jobs on a regular basis.
Subscribers get exclusive content. Just released...MRO Best Practices Special Report - a $399 value!
“Steel-ing” Reliability in Alabama

A joint venture between two of the world’s largest steel companies inspired innovative approaches to maintenance reliability that incorporate the tools, technology and techniques of today. This article takes you on their journey.

Three Things You Need to Know About Capital Project Prioritization

“Why do you think these two projects rank so much higher in this method than the first method?” the facilitator asked the director of reliability.

What Is Industrial Maintenance as a Service?

Industrial maintenance as a service (#imaas) transfers the digital and/or manual management of maintenance and industrial operations from machine users to machine manufacturers (OEMs), while improving it considerably.

Three Things You Need to Know About Criticality Analysis

When it comes to criticality analysis, there are three key factors must be emphasized.

Turning the Oil Tanker

This article highlights the hidden trap of performance management systems.

Optimizing Value From Physical Assets

There are ever-increasing opportunities to create new and sustainable value in asset-intensive organizations through enhanced use of technology.

Conducting Asset Criticality Assessment for Better Maintenance Strategy and Techniques

Conducting an asset criticality assessment (ACA) is the first step in maintaining the assets properly. This article addresses the best maintenance strategy for assets by using ACA techniques.

Harmonizing PMs

Maintenance reliability is, of course, an essential part of any successful business that wants to remain successful. It includes the three PMs: predictive, preventive and proactive maintenance.

How an Edge IoT Platform Increases Efficiency, Availability and Productivity

Within four years, more than 30 per cent of businesses and organizations will include edge computing in their cloud deployments to address bandwidth bottlenecks, reduce latency, and process data for decision support in real-time.

MaximoWorld 2022

The world's largest conference for IBM Maximo users, IBM Executives, IBM Maximo Partners and Services with Uptime Elements Reliability Framework and Asset Management System is being held Aug 8-11, 2022